83 research outputs found

    A Tandem Fluid Network with L\'evy Input in Heavy Traffic

    Get PDF
    In this paper we study the stationary workload distribution of a fluid tandem queue in heavy traffic. We consider different types of L\'evy input, covering compound Poisson, α\alpha-stable L\'evy motion (with 1<α<21<\alpha<2), and Brownian motion. In our analysis we separately deal with L\'evy input processes with increments that have finite and infinite variance. A distinguishing feature of this paper is that we do not only consider the usual heavy-traffic regime, in which the load at one of the nodes goes to unity, but also a regime in which we simultaneously let the load of both servers tend to one, which, as it turns out, leads to entirely different heavy-traffic asymptotics. Numerical experiments indicate that under specific conditions the resulting simultaneous heavy-traffic approximation significantly outperforms the usual heavy-traffic approximation

    Factorization identities for reflected processes, with applications

    Get PDF
    We derive factorization identities for a class of preemptive-resume queueing systems, with batch arrivals and catastrophes that, whenever they occur, eliminate multiple customers present in the system. These processes are quite general, as they can be used to approximate Levy processes, diffusion processes, and certain types of growth-collapse processes; thus, all of the processes mentioned above also satisfy similar factorization identities. In the Levy case, our identities simplify to both the well-known Wiener-Hopf factorization, and another interesting factorization of reflected Levy processes starting at an arbitrary initial state. We also show how the ideas can be used to derive transforms for some well-known state-dependent/inhomogeneous birth-death processes and diffusion processes

    Data Dissemination Performance in Large-Scale Sensor Networks

    Full text link
    As the use of wireless sensor networks increases, the need for (energy-)efficient and reliable broadcasting algorithms grows. Ideally, a broadcasting algorithm should have the ability to quickly disseminate data, while keeping the number of transmissions low. In this paper we develop a model describing the message count in large-scale wireless sensor networks. We focus our attention on the popular Trickle algorithm, which has been proposed as a suitable communication protocol for code maintenance and propagation in wireless sensor networks. Besides providing a mathematical analysis of the algorithm, we propose a generalized version of Trickle, with an additional parameter defining the length of a listen-only period. This generalization proves to be useful for optimizing the design and usage of the algorithm. For single-cell networks we show how the message count increases with the size of the network and how this depends on the Trickle parameters. Furthermore, we derive distributions of inter-broadcasting times and investigate their asymptotic behavior. Our results prove conjectures made in the literature concerning the effect of a listen-only period. Additionally, we develop an approximation for the expected number of transmissions in multi-cell networks. All results are validated by simulations

    Queues with random back-offs

    Full text link
    We consider a broad class of queueing models with random state-dependent vacation periods, which arise in the analysis of queue-based back-off algorithms in wireless random-access networks. In contrast to conventional models, the vacation periods may be initiated after each service completion, and can be randomly terminated with certain probabilities that depend on the queue length. We examine the scaled queue length and delay in a heavy-traffic regime, and demonstrate a sharp trichotomy, depending on how the activation rate and vacation probability behave as function of the queue length. In particular, the effect of the vacation periods may either (i) completely vanish in heavy-traffic conditions, (ii) contribute an additional term to the queue lengths and delays of similar magnitude, or even (iii) give rise to an order-of-magnitude increase. The heavy-traffic asymptotics are obtained by combining stochastic lower and upper bounds with exact results for some specific cases. The heavy-traffic trichotomy provides valuable insight in the impact of the back-off algorithms on the delay performance in wireless random-access networks

    Singularities of the generator of a Markov additive process with one-sided jumps

    Get PDF
    We analyze the number of zeros of det(F(alpha)), where F(alpha) is the matrix cumulant generating function of a Markov Additive Process (MAP) with one-sided jumps. The focus is on th

    Singularities of the generator of a Markov additive process with one-sided jumps

    Get PDF
    We analyze the number of zeros of det(F(alpha)), where F(alpha) is the matrix cumulant generating function of a Markov Additive Process (MAP) with one-sided jumps. The focus is on th
    • …
    corecore